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On the Resolution of Inhomogeneous Norm Form Equations 
in Two Dominating Variables 

By IstvAn GaAl* 

Abstract. Applying Baker's well-known method and the reduction procedure described 
by Baker and Davenport, we give a numerical algorithm for finding all solutions of 
inhomogeneous Thue equations of type 

NK/Q(X + ay + A) = 1 

in the variables x, y E Z and A E ZK with [ < (max lxi, IYI))1/2, where K = Q(a) is a 
totally real cubic field. 

1. Introduction. In 1966 Baker developed a new method (cf., e.g., [2]) for 
solving Diophantine problems which led to effective upper bounds for the solutions 
of wide classes of Diophantine equations (for a survey, see, e.g., [23] and [20]). Here 
we restrict ourselves to norm form equations, and we mention only the results of 
Baker [1] (cf. also [2]) and Coates [4] on Thue equations and the theorems of Gy6ry 
and Papp [13], Gy6ry [9]-[12] and Kotov [15]-[17] on norm form equations in several 
variables. 

In 1974 Sprindzuk [21] gave a so-called inhomogeneous generalization of Baker's 
famous result on Thue equations. Let a be an algebraic integer of degree > 3, 
K = Q(a), O $ m E Z. Consider the equation 

(1) NK/Q(x+cay+A)=m, 

where the variables are x, y E Z and** A E ZK. To ensure the finiteness of the 
number of solutions of (1) it is necessary to restrict the values of A. Sprindzuk 
assumed that*** [] < (max(jxj, jyj))1-( (0 < ( < 1 is a given constant). Thus A 
may be called a nondominating variable, while x and y are dominating variables. 
Under the above conditions, Sprindzuk derived effective upper bounds for all solu- 
tions of Eq. (1). In the special case A = 0, his result implies Baker's theorem on 
Thue equations. 

Later, combining the method of Gy6ry and Papp [13] and Sprindzuk [21], the 
author [7], [8] obtained effective upper bounds also for the solutions of certain 
inhomogeneous norm form equations in several variables. 
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The problem of solving the Thue equation 

(1') NK/Q(x+acy)=m inx,yEZ 

can be stated in the following way: Determine all elements in the Z-module {1, a} 
with given norm m. On the other hand, the resolution of Eq. (1) means to find all 
elements of ZK which have norm m and which are not too far from the elements 
of the Z-module { 1, a}. Moreover, inhomogeneous equations of type (1) have im- 
portant applications in the theory of Diophantine approximations (cf. [7] and [8]). 
Finally, we observe that for any fixed A, Eq. (1) is an inhomogeneous polynomial 
equation in the variables x, y E Z. Previously there was no general method of 
handling such inhomogeneous equations, but Sprindzuk's result, as a special case, 
gives effective upper bounds for all solutions x, y of these equations. 

All the results mentioned above yield only a theoretical solution of the Diophan- 
tine problems, since the upper bounds derived for the solutions by using Baker's 
method are usually very high and in most cases, even with the fastest comput- 
ers, it seems impossible to check all values of the variables below this bound. To 
overcome this difficulty, Baker and Davenport [3] described a new computational 
method, which, in numerical cases, usually allows one to reduce the large upper 
bounds and to find all solutions of certain Diophantine equations. Their method 
was applied for solving Thue equations and was further refined and extended by 
Ellison [5], Ellison et al. [6], Steiner [22] and Pethb and Schulenberg [19]. Steiner, 
Pethd and Schulenberg utilized the observation that, with the exception of few 
small values, all solutions of Thue equations (1') correspond to partial quotients 
in the continued fraction expansion of the real conjugates of a. This idea enabled 
Peth6 and Schulenberg to solve also Thue equations of degree higher than three. 
Recently, Peth6 [18] gave an efficient algorithm to determine all solutions of Thue 
equations up to a large bound. 

In this paper we apply the method of Baker and Davenport to the resolution of 
inhomogeneous Thue equations of type (1). For simplicity we restrict ourselves to 
the case when K is a totally real cubic field, ( = 1/2 and m = 1. (We remark that 
our method can be modified to work for any algebraic number field K with small 
number of fundamental units, for any m and for any > ? 1/2.) We illustrate our 
algorithm on a numerical example. 

2. Effective Upper Bounds Using Baker's Method. We consider the 
equation 

(2) NK/Q(x + ay + A) = 1 in x, y E Z and A E ZK, 

where K = Q(a) is a totally real cubic field. Putting X = max(JxJ, JyJ), our 
condition on A can be written in the form [] < X'/2. In our numerical example, 
a is defined by the equation 

X3-32 - 4x - 1 = 0 

and the approximate values of its roots are 

a(1) = -0.69202147, a(2) = -0.3568958, a(3) = 4.0489173. 
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We shall denote by ty(i) the conjugates of any y E K corresponding to a(i). Let 
-(i) = x + ami)y + A(i) (i = 1, 2,3). Using this notation, Eq. (2) has the form 

(3) NKQfQ 3) = a(1) d(2) d(3) = 1 

In our example, a pair of fundamental units of K with norm +1 is n71 = a, 
?72 = -a2 + 3a + 2. In view of (3), = bi b2 with some b , b2 E Z. 

In this section our main purpose is to give an upper bound for H = max(Ibi , Ib2 ) 
We shall apply the method of Sprindzuk [21] and some ideas of Steiner [22] as well. 
For 1 < kil < 3, k $ 1 we have 

log 1|3(k) I-b1 log (k) ? b2 log Ik) 

log 1:3() - = bi log t17(1)1 + b2 log10 1 

whence 

(4) H < Nmax(log1l3(k)I, log 1(1) )J 

where N is the row-norm of the inverse matrix of 

(log 2j(k) log I(k) I 
log In(0 log In4')0 I 

that is, the maximum sum of the absolute values of the elements in its rows. 
Choosing appropriate values of k, 1 which minimize N, we get in our example 
N = 2.6614048. Further, (4) implies 

H < Nlog [(2 + ? max a(i) X], 

that is, 

(5) logX > c1H-c2, 

where cl = 1/N and C2 = log(2 + maxi=k,1 la(i)D). In our example, we have 
cl = 0.3757414, c2 = 0.9902923. Applying the method described in Section 5, 
we searched over the range H < Ho (in our example, Ho = 35) to find solutions. 
Thus we must deal here only with those pairs bl, b2 for which H > Ho, whence, in 
view of the last estimate, we may assume that 

(6) X > exp(ciHo - c2) = X0, 

where in our example X0 > 191119. Let 
- Max 1,3(k) I and IP(i) = min 13(k) . 

k=1,2,3 k=1,2,3 

Obviously b3(i)Q < 1 (cf. (3)), and thus 

(7) 13(i) M > -i M :(j) I 
? W I> la(i) - (i) I IyI - 2X1/2 - 1. 

Further, since 

a W,3 a (0), = (a(i) - a(i))x + a -A a (i) A 

we get 

(i) laMi)-I (i) J_ _ I lam I + 1la I X112 la(i) I 
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Combining (7) and (8) yields 

(9) 1,3(") ? c3 (i j)X - c4 (i j)X1/2 - C5(inj) 

where 

c3(i,j) =min {la() - 11 ( i a(J) }I 

c4(ij) = max {2: la J' 

C5 (ij) = max 1, Iaw I 

By (6), X is large enough, and thus the expressions on the right side of (9) can 
be estimated from below by co(i, j)X. Here we may usually put, say, co(i, j) = 
c3(i j)/2, but for our purposes it is useful to make co(ij) as large as possible by 
taking co(i, ) = c3 (i, A) - E with, say, E = 10-2 or 10-3, which can be done in view 
of (6). Finally, letting co = minl<k,l<3,kOl co(k, 1), we get 

(10) 1,(t)1 > cox. 

(In our example, co = 0.3251256.) 
For simplicity, let atk1 = at(k) _(X() for any k, 1 E {1, 2, 3}. Let k = {1, 2, 3}\{i, j} 

and consider the following identity: 

(11) Of p:(k) - A(k)) + ajk(f(l) - A i)) + ak - A,))- 0. 

Let A = aiA (k) + aj kA () + akt A(); then (11) implies 

at~2: 0) akt,30) - A 
= 1- ck I3 ) = 1-Z. 

We recall that : = 71 72* From the above equation we obtain 
(k) (k) t 

L = b, log - | + b2log 972 + log I| =|log |1-z|. (Z) (i)k 

From (10) we get 

lz < lakil + (Icli2I + 10a231 + Ia3l I)X ? c6X-1/2 
-lakj lCOX 

with c6 = (1 + e) (Z1<l<m<3 clamDl)/(cominj<1<m<3 clalmD), where we may put, 
for example, E = 10-2 or 2 .10-2 if (6) ensures maxl<l<m<3 laiml < E X/2. In 
our example, c6 = 87.206869. Using (6) again, we can see that lzl < 1/4 and thus 

z2 z3 Izl 4 12 (12) L = Ilg11?~- zll = Iz+ - + - + | < - 1 < < 3C6X- /2 2 3 11 - z13 
Since we need an upper bound for L in terms of H, we apply (5) to (12) to get 
(13) L < exp(-c7H + c8), 

where C7 = cl/2, c8 = log(4c6/3) + C2/2; in our example, C7 = 0.1878707, c8 = 
5.2511113. 

To give a lower bound for L, we use Baker's method, more precisely, the following 
sharp estimate of Waldschmidt [24] for linear forms in the logarithms of algebraic 
numbers. We formulate this result in the special case when b- E Q (cf. Theorem 3 
of [22]). 
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LEMMA 1 (Waldschmidt [24]). Let a,,..., an be nonzero algebraic numbers 
and let bo,...,bn be rational integers. Let D = [Q(l... an): Q], and suppose 
that ai has defining equation aoxd + + ad =0 where (ao, . . ,ad) = 1. Define 
the measure of ai by 

M (ai) = ao fl max(1, Iail), 
a 

where a runs through all embeddings of Q(ai) -- C, and let the absolute logarithmic 
height of ai be defined by 

h(ai) = log(M(ai))/D. 

Further, let V0 = 1/D and V.7 > max(h(aj),Ilog aj /D,Vj_>) for 1 < j < n. 
Finally, let E be any number satisfying 

1 < E < min eDVl, min 4DVji> - - 1 <j<n I log aj| 

and let V1+ = max(Vj, 1) for j = nand n -1, with V -+ = 1 if n =1. If A= 
bo + b, log a1 + + bn log an does not vanish, then 

JAl > exp[-W (log H C)], 

where 

W = C (n)D+2V1 . Vn (log EDVn 1) (log E)n, 

H= max Ibj11 C=log(EDV, ) 
0<j<n 

and 
C(1) < 2 0 (2) < 25, C(3) < 27 C(n) < 28 n51r2. 

We shall apply this deep result for n = 3 and for the algebraic numbers 61 = 

1k)1 |1 62 2 2 63 = Jaij/akjJ instead of a,, a2, a3. According to the 
possible choices of i, j, k we have 6 cases, but if we consider L, we can easily see 
that if j is fixed and we interchange the values of k and i, then the value of L does 
not vary. So it is sufficient to consider separately the following cases: 

0 j= 1, k= 2, i =3, 

01 = 2, k = 1, i = 3, 
9 j= 3, k =1,i= 2. 

For the application of Lemma 1 we note that in our case n = 3 and D = 6. The 
leading coefficients of the defining polynomials of 61, 62 are 1, since they are units 
in Q(61, 62, 63). Further, in our example, the defining polynomial of 63 is 

x6-3x5-183x4 + 371x3-183X2-3x + 1 

with leading coefficient 1. Moreover, we calculated 

h(61) = 0.8095869, h(62) = 0.46615, h(63) = 0.8831616, 

In cases ?,, Q, ? of our example we obtained the following results: 
? C = 3.8992605, log W = 56.004312, 
? C = 5.1708105, logW = 54.39818, 
O C = 3.8712005, log W = 56.050706. 
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We conclude that in any case 

(14) L > exp(-Wo (log H + Co)), 

where W0 and C0o are the maxima of the values of W and C, respectively, obtained 
in cases ?, i, Q. In our example, Wo = exp(56.050706), Co = 5.1708105. 

Combining (13) and (14), we infer 

-Wo(log H + Co) < -c7H + C8, 

whence 
H WoCo+- WologH+ C- 

C7 C7 C7 

Let c9 = Wo/c7 + c8/c7 and c10 = max{WoCo/c7, c9}. Then we obtain 

(15) log (1 H+ 1) < loge1o. 

In our example, log c1o = 59.365737. We checked inequality (15) for some powers 
of 10 and we found that it holds for H = 1027 but fails for H = 1028, which implies 
H < 1028 in our example. 

3. Reduction with the Method of Baker and Davenport. In this section 
we shall reduce the large upper bound obtained for H by Baker's method. 

Dividing L by log l17k)/4 i) and applying (13) we have 

(16) L' = lbj?9 + b2-31 < AK-H, 

where 
log l(k) I/l(i) I log Irakj /lij 

q9 - 
1 1_ 

V- (k) 1 (i) log' 1 | (k) I1?7 (i) I 

eC8 

minl<<m?3 1 log 3 10 2) I/In2 I 
Ism 

and K - eC7 In our example, logA = 6.2504055 and logK = 0.1878707. 

We shall use the Baker-Davenport lemma in the following modified form: 

LEMMA 2. Suppose that i9, 3 are given real numbers, A is a given real constant, 
M and B (B > 6) are rational integers. If there exist rational integers p, q satisfying 
1 < q ? MB, 9q - pI < 2/MB and I q,311 > 3/B, then there is no solution of the 
inequality 

Ibjd+b2-31 ?AK-H 

in rational integers b1, b2 with 

log(MB 2A)<H M 
log K - 

< < 

where H = max(lbiI, Ib2 1) and II .I denotes the distance from the nearest integer. 

Proof. The proof involves standard arguments (cf., e.g., [5]). 
Put w = 9- p/q, so that Iwi < 2/qMB. We have 

lbjqt9 + b2q - 3ql < qAKH < MBAKH. 
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Since dq = qw + p, the above inequality implies 

lbip + blqw + b2q - /ql < MBAK-H. 

By the assumptions 

llq,31 > 3/B and lblqwl < Mq = 2/B, 

there follows 

llblqw-q,311 > 1/B. 

Thus, 

1/B < lblqw - qf + b1p + b2ql < MBAK-H 

which implies 

H log(MB 2A) 

log K l 

This modification of the original lemma is necessary to avoid further diminishing 
the value of log K in (16), which would make the reduction procedure less efficient. 

We apply Lemma 2 to inequality (16) to reduce the bound H < Ho (in our 
example Ho = 1028) separately in cases ?, ?, Q. 

The reduction, in the case of our example, was done in four steps as shown in 
the following table. 

M B q < ldql l < l1,3q Il > new M 
I 1028 100 1030 2 10-30 0.03 426 

II 426 100 42600 4.69 10-5 0.03 115 
III 115 50 5750 3.47 10-4 0.06 101 

IV 101 11 1111 1.80 10-3 0.2727273 84 

The final purpose was to reduce the bound H < 1028 to H < 84. 

For this reason we used multiprecision arithmetic to compute the values of c(1), 
Ce!(2), a(') with the accuracy of 100 digits, which enabled us in cases ?, Q, 

9 to 
compute the corresponding values of v9 and ,3. The approximate values V90 and /3o 
obtained from ce MI Ce(2), Ce(3) by using 100-digit numbers were exact up to at least 
90 digits: IV - 9ol < 10-9?, 1i - 3ol < 10-90. Since in cases I-IV, q < 1030, we 
have 

IIPq9II = lq9 - pi < qIt9 - V9ol + Iq9o - pi < 1060 + lq90oll, 

and similarly llq,3oll < 10-60 + llq,311, that is, llq,3II > llq,3oll - 10-60. This shows 
that using the values of V9o, /3o we have to calculate integers q so that I lqd9o I , I lqi3o 
must satisfy somewhat sharper inequalities than the corresponding inequalities for 

lq19l, llq,/31 in the above table. That is, we have to find q such that 

iqt~ol < MB_ 10-60, IIqfloI> 
3 

+ 10-60. 
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As usual, we computed the values of q using the continued fraction expansion of 
V9O, in which case the corresponding inequalities were satisfied with much greater 
margin, not merely with a margin of 10-60. In cases 0, @, ? we obtained the 
following values for q: 

I. 

? q = 3463384322 3689295773 6922151743 

? q = 3471260358 0565116186 0682550441 

?I q = 2551657169 4450051521 6625726749 

II. III. IV. 

o 12927 585 585 
? 15932 1083 1083 
O 9524 3031 431 

In this way we obtained a new and rather low bound HM for H: in our example, 

HM = 84. 

4. Solutions of Medium Size. We now turn to the range HO < H < HM (in 
our example, HO = 35, HM = 84). In the following we show how one can reduce 
the procedure of checking the pairs b1, b2 in this range to the test of very few cases 
only. 

Let H1 < H2 be integers in the interval (Ho, HM] and consider the pairs of 
exponents b1, b2 with H1 < H < H2, where H = max(Ibi1I, 1b2 1) as before. b1, b2 
must satisfy (16), that is 

Ibit9 + b2 - iI < AK-H < AK-Hi, 

whence 

(17) -AK -Hi-b?9 +0<b2 < AK -Hi- bi + ,B 

We remark that here we have three possibilities for the values of V9 and : corre- 
sponding to the cases 0, 0, Q. If H1 is sufficiently large, then AK-Hi has a 
small value, which means that there may be only very few possible values of b2 for 
a fixed b1. 

To get all possible pairs b1, b2 with H1 < H < H2, we let b1 run through all 
integers in [-H2, H2]. For each b1 we determine the possible values of b2 from (17) 
according to the cases O., 0, 0. We discard the pair b1, b2 if H1 < H < H2 does 
not hold or if Ibiv9 + b2 -,1 > AKH. 

In our example we used the following values in the role of H1, H2: 

H1 36 40 45 55 65 
H2 39 | 44 54 | 64 | 85 

The intervals [H1, H2] covered the range (Ho, HM] completely and we found only 
24 possible pairs b1, b2, which were tested with the algorithms described in Section 
5. 
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5. Searching Over the Remaining Set. In this section we describe those 
algorithms which enabled us to check the possible pairs bl, b2. These algorithms 
were used to test all pairs in the range H < HO and the remaining few pairs with 
HO < H < HM found in Section 4. 

Consider a fixed pair bl, b2. We have to decide whether /3 = r bi r2 may have 
the form x + aky + A with x,y E Z, A E ZK, where [Y < X1/2, X = max(lxl, lyl). 
Our condition on A can be written in the form 

(18) max 1, - x - 0 (')yl < max(X/i, lYl), 
1<i<3 

where x, y E Z are unknowns, but P3(i) is given along with bl, b2. 
I. If IxI > iYi then (18) yields 

/ -I < ,Bi X- (i)y < V /jX_ 

whence 

(19) - (_' - + ? < ?- + (i) + : (i = 1,2,3). 

II. If lxi < JyI then (18) implies 

- ; < ii (i) - X - cat)y < FYIg 
that is, 

(20) -0(j)y - Vii+ /3(i) < x < -a(j)y + i/; + p3(i) (i = 1, 2,3). 

If in (20) we interchange the roles of x and y, we can see that in both cases 1, 11 we 
want to find rational integers x and y satisfying the system of inequalities 

(21) Ax-Bi /xI+C ?<y<Ax+Bixi+C, (i=1,2,3), 

where the coefficients Ai, B., Ci are given by (19) and (20). (In both cases, Bi > 0, 
i = 1, 2, 3.) Further (after the change of x and y in case II), x and y must satisfy 

(22) -JxJ < y < ?x 

as well. 
First, we have to find those values of x for which the intersection of the intervals 

given by (21) for y is nonempty. This is the case only if any lower bound, given for 
y in terms of x, is less than any such upper bound, that is, if 

(23) (Ai-A3)x-(Bi + B)Xlx + (C%-CC) < 0 (1 < i, j < 3,i j) 

is satisfied. (In view of Bi > 0, the similar inequality for i = j is trivial.) These 
inequalities are second-degree inequalities for /xi. 

The main problem of this section is to find the solutions of (23). Here, the 
coefficients Ai, B, have (in most cases and also in our example) moderate values. 
The difficulty is caused by the values of C0, which may be very high or low compared 
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to A, and B,. Of course, the solutions of the system of inequalities (23) could 
be found in a unique manner by using multiple-precision arithmetic, but since it 
is necessary to use a procedure for computing square roots, which is an iteration 
procedure requiring a considerable amount of computation time, it is better to avoid 
multiple-precision arithmetic if at all possible. Since large values of C0 cannot be 
exactly represented in single precision, we used, given the magnitude of the Ci, two 
algorithms to test all pairs of exponents b1, b2. 

Our first method was applicable when all the Ci were small, say 1CI < 106. 
In this case (in which we expect the solutions anyhow) there is no difficulty in 
determining the solutions of the system of inequalities (23). We examined cases I 
and II separately and in both of them two subcases according as x > 0 or x < 0. 
In each subcase we proceeded as follows: 

a. For each inequality in (23) we computed the intervals in which IxJ may 
assume its values and we took the intersection of this set of intervals. 

b. We transformed the intervals (obtained by taking intersection) for lXi into 
intervals for x, and for all integers x in this set of intervals we calculated the 
maximum MA of the lower bounds and the minimum MI of the upper bounds 
given by (21) for y in terms of x. For fixed x, the corresponding values of y are the 
integers lying in [MA, MI] n [- xj, lxi] (cf. (22)). 

In this procedure, if in any step the calculated interval (system) is empty, we 
pass to the next subcase. 

Now consider those cases in which some of the lCjI are large (> 106). In this 
case (when we do not expect any solutions) our purpose is to eliminate the cases 
by a simple method. 

Let A = max A, -A3 1, a = min lA -Aj1, B = max lB, + Bj1, AO = max IAij, 
Bo = max BiB1, where the maxima and minima are taken for cases I, II and for 
each i $ j in A, a, B and for each i in AO, Bo. The following lemma allowed us to 
eliminate easily a considerable amount of pairs of exponents b1, b2. 

LEMMA 3. Suppose that for fixed b1, b2 in case I (resp. in case II) there exist 
indices i, j, k (i $ i) and positive constants Do and K with the following properties: 

lCkI > Do, IC -CjI < K and Di (K) + D2(K) < DoI 

where D1 (K) = (B + /B2 + 4AK)/2a and D2 (K) = AoD2 (K) + BoD1 (K). Then 
there are no solutions in case I (resp. case II). 

Proof. We may assume that A, - Aj > 0 since otherwise the inequality will hold 
after an interchange of i and j. Then, if x > 0, (23) is a second-degree inequality 
for Ix!, whence \Ix < D1 (K). (If x < 0, the same holds after an interchange of 
i and I.) Thus, 

IAkx ? Bk lii < D2(K). 

In view of (21) and (22), the possible values of y must satisfy 

Ijy > ?AkX BkIXI+ CkI > Do-D2(K) 
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and 

iYi < lxi < D12(K). 

(In the above inequality we take the sign - or + according as Ck > 0 or Ck < 0.) 
Now if D 2(K) < Do - D2(K), then the contradiction shows that there cannot be 
any solutions. E 

In our example, we applied Lemma 3 with Do= 106, K = 4520. In our case we 
have ir(2)i > 1, in22i > 1, while 1ir1 l, ir(Th, Ir2') , ir23j1 are less than 1. (One can 
always choose fundamental units with this property.) Considering the numerical 
values of the conjugates of our units, we can see that, if b1 > 11 and b2 > 0, then 
the conditions of Lemma 3 are satisfied (with k = 2, i = 1, j = 3), so these pairs 
could be discarded without any test. 

In our second algorithm we dealt with those cases in which large values of the 

Ci occurred. In these cases, sgn(Ci) and log IC, I was represented in the computer 
instead of Ci. Addition of such values was performed by a separate subroutine 
which computed upper and lower estimates of the sum. In each case, when Lemma 
3 was not applicable, we followed step a. of our first algorithm, but using log- 
arithmic representation of numbers and being careful to round up or down the 
results of additions in order to get somewhat wider intervals. If the intersection 
of the set of intervals was not empty, then we obtained a maximal value XM for 

lxi. Afterwards, we calculated the upper estimate XU = AoXM2 + BoXM for 

IAx ? Bi lii and each case could be eliminated by showing that the intersection 
of the intervals [0C - XU, C, + XU] (i = 1, 2, 3) and [-XM2, XM2] is empty. 

6. Computational Aspects. The first version of the program was developed 
on a simple C64, but later the same programs were executed on an IBM PC com- 
patible computer for which the computation time took only minutes. The multiple- 
precision arithmetic for the reduction procedure was written in Pascal, using the 
classical algorithms of Knuth [14]. The testing algorithms described in Section 5 
were written in Basic. The test of the remaining set (appr. 4000 pairs b1, b2) took 
about half of the computation time. 

7. List of Solutions. Finally, we give all solutions of the equation which was 
our example throughout the paper. In each case we give the pair of exponents 

bl, b2, the coordinates of ,3 = rbl' r2 in the integral base 1, a, a2 of ZK and the 
values of x and y. These data make possible to calculate the coordinates of A 
corresponding to x and y. Naturally, in the table one can find also all solutions of 
the corresponding homogeneous equation 

NK/Q(x + ay) = x3 + 3x2y-4xy2 + y3 = 1 

A Thue equation equivalent to this one was already solved by Petho and Schulenberg 
[19]. In the inhomogeneous case, there are usually further solutions corresponding 
to a solution of the homogeneous equation, but there are also several other solutions 
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which do not correspond to any solution of the homogeneous equation. 

b = -10, b2 = 26 b = -3, b2 = -6 

/196,277, -9/ / - 63,52, -9/ 
179 < x < 182, y = 241 x = -85, y = 19 
175 < x < 183, y = 242 x = -84, 19 < y < 22 
171 < x < 183, y = 243 x = -83, 19 < y < 22 
168 < x < 184, y = 244 x = -82, 19 < y < 22 
168 < x < 185, y = 245 x = -81, 20 < y < 22 
169 < x < 185, y = 246 x = -80, y = 21 
169 < x < 185, y = 247 b1 =-3, b2 = 9 
169 < x < 181, y = 248 6, 1 
170 < x < 177, y = 249 x = -4, y = -4 
170 < x < 173, y = 250 x = -3, y = -5 
b1 =-8, b2 = 22 b1 =-3, b2 = 11 
/65,105,16/ / - 5, -10, -4/ 
x = 98, y = 159 -14 < x < -13, y = -25 
x = 99, 160 < y < 161 -15 < x < -12, y = -24 
x = 100, y = 162 x = -14, y = -23 
b1 =-7, b2 = 19 b1 =-2, b2 =-4 
/- 42, -60,1/ /16, -8,1/ 
-37 < x < -34, y = -59 x = 16, -4 < y < -3 
-41 < x < -34, y = -58 x = 17, -5 < y < -4 
-45 < x < -34, y = -57 x = 18, -5 < y < -4 
-46 < x < -35, y = -56 x = 19, -5 < y < -4 
-45 < x < -39, y = -55 x = 20, -6 < y < -4 
-44 < x < -43, y = -54 x = 21, -6 < y < -5 

b1 =-6, b2 = 16 b1 =-2, b2 = 7 
/28,37, -5/ /3,3, -2/ 
x = 17, 19 < y < 20 x =-1, y = -4 
x = 18, y = 20 b1=-2, b2 = 8 
b1 =-5, b2 = 15 /3,5,1/ 
/-14,-23,--4/ 5 < x < 7, y=8 

x = -21, y = -39 4 < x < 6, y= 9 
-25 < x <-21, y = -38 b1 = -2, b2= 9 
-25 < x < -20, Y = -37 /1,-2,-5/ 
-25 < x < -21, y = -36 x = -10, -20 < y < -19 

b1 = -4, b2 = 12 x =-9, y =-19 
/9,13,0/ b1 = -1, b2 = -2 
10 < x < 11, y= 12 -41,0/ 
6 < x < 12, y 13 -6 < x < -3, y = 1 
6 < 8, y= 14 
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b, = -1, b2 = 5 

/ - 2, -310/ b = 1, b2= 3 

b, =-1, b2= 6 -6<x<-4,y=-10 
/ - 1,0,2/6<x< 

4 = 0 

3 <x< 4, y=7 bb=1, b2=4 3<x?4, b2 = 7 /1,5,5/ 
bi=-1, b2=7 x=1122 
/-2,-5 -3/ x=11 y=22 
-10 < x < -8, y = -16 x 12, 22 < y 23 

-9 < x < -7, y = -15 olo= ,lb = 

bi=0, b2 =0 x =2, y =4 
/1,0,0/ bx=2, b2=1 
1 < x < 2, y =0 b0 

= 2, 

b1, =0, b2=2 - 5 < x < -3, y = -8 
/1,1,0/ b = 2, b2= 2 
1 < x < 2, y=1 /1,44/ 
b =0, b2 = 4 x =10, y =17 
/1,2,1/ 9 <x?< 10, y l8 

x=4, y=5 9?x?10,y =1 
2<x3, y6 9 < x<10, y 19 

2<x?3, Y6 ~~~b = 3, b2= -2 
b,=0, b2=5 /1,3,0/ 

/01 -21 -3/0<x?<2, y=3 - 7 < x < -6, y = -13 b = 3, b2 = -1 
- 7 < x < -6 y--12 3< -2 - 

b = 0, b2 =6 -3x-, - 
/2, 7,6/ -4 -,y6 
x = 15,27 y < 29 = b =0 

bl = 16, b2 = 29 bl= 3, b2 = 1 

bx= 1, b22= 9 /1,4,3/ 
b011,b0 06 < x?<8, y =14 

/0,1,0/ 9 /- ,y-81-7/ 

bl =0, 2 =1 =3, b2 =13 
/0-121/ ? -, b 
/03,1,1/ x=-3, y=-5 
x =3, y= 4 
x =2, y =5 
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b1 = 4, b2 =-2 b1 = 9, b2 =-9 

/0,1,3/ - 9, -27, -5/ 
6<x<7, y=11 -20<x<-18, y=-46 
6 < x < 7, y = 12 -22 < x < -18, y = -45 

b1= 4, b2 = -1 -22 < x < -17, y =-44 
/i -1,-5,-6/ -21 < x < -20, y = -43 

x =-14, -27 < y <-26 b1 = 11, b2 =-12 

b1= 5, b2 =-5 /22,62,1/ 
/ - 3, -8,1/ 27<x<30, y=63 
x=0, y= -5 23<x<30, y=64 
x = -1,y=-4 19 < x < 31, y = 65 

b1=5, b2 =-4 18 < x < 30, y = 66 
/2,6,1/ 18 < x < 26, y = 67 

4 < x < 6, y = 9 19 < x < 22, y = 68 
3 < x < 5, y = 10 b1=15, b2=-17 

b1 = 5, b2 = -3 /-97,-275,-9/ 
2/ -2,-7,-4/ -112 < x < -110, y = -312 

-11 < x < -10, y = -22 -116 < x < -109, y = -311 
-12 < x < -10, y = -21 -120 < x < -108, y = -310 

x= -11,y=-20 -124 < x < -108, y = -309 

b1 = 6, b2 =-5 - 127 < x < -107, y =-308 
/1,1, -5/ - 127 < x < -106, y = -307 

x=-10,y=-17 - 126 < x < -106, y = -306 
b1= 7, b2 =-7 - 126 < x <-106, y =-305 

/ - 5, -14,0/ - 125 < x < -110, y = -304 
-4<x -2,y=-15 - 125 < x < -114, y = -303 
-8 < x < -2, y = -14 125<x<118,y302 
- 7 < x?< -6, y = -13 - 124 < x < -122, y = -301 

b, = 7, b2 = -6 
/4,13,5/ 
13 < x < 16, y = 30 
14 < x < 16, y = 31 

x = 14, y = 32 

b, = 9, b2 = -10 

/13,35, -4/ 
4 < x < 5, y = 20 
3 < x < 5, y = 21 

x = 4, y = 22 
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